Respuesta :

Answer:

1) If the function is [tex]f(x)=\frac{x^{2}}{(3+x)}[/tex], [tex]f(6)=4[/tex]

2) If the function is [tex]f(x)=x^{(2/3)}+x[/tex], [tex]f(6)=9.30[/tex]

3) If the function is [tex]f(x)=\frac{x^{2}}{3}+x[/tex], [tex]f(6)=18[/tex]

Step-by-step explanation:

To solve this problem you must apply the proccedure shown below:

f(6) means that you must substitute x=6 into the function above.

1. If the given the function [tex]f(x)=\frac{x^{2}}{(3+x)}[/tex], you obtain:

[tex]f(6)=\frac{6^{2}}{(3+6)}=4[/tex]

2. If the function is [tex]f(x)=x^{(2/3)}+x[/tex]

Then:

[tex]f(6)=6^{(2/3)}+6=9.30[/tex]

3. If the function is [tex]f(x)=\frac{x^{2}}{3}+x[/tex]

Then:

[tex]f(6)=\frac{6^{2}}{3}+6=18[/tex]

Answer:

f(6) = 4

Step-by-step explanation:

We have given a function.

f(x) = x² / 3+x

We have to find the value of function when x is 6.

f(6) = ?

Now, putting x = 6 in given function , we have

f(6) = (6)² / 3+6

f(6) = 36 / 9

f(6) = 4 which is the answer.

ACCESS MORE