Answer:
Part A) The height of the television is [tex]25.6\ in[/tex]
Part B) The width of the television is [tex]19.2\ in[/tex]
Part C) The area of the television is [tex]491.52\ in^{2}[/tex]
Step-by-step explanation:
Let
x-----> the width of the television
y-----> the height of the television
we know that
The diagonal of the television is [tex]32\ in[/tex]
[tex]\frac{y}{x}=\frac{4}{3}[/tex]
[tex]y=\frac{4}{3}x[/tex] ----> equation A
Applying the Pythagoras Theorem
[tex]{y^{2} +x^{2}} =32^{2}[/tex]------> equation B
substitute the equation A in equation B
[tex]{(\frac{4}{3}x)^{2} +x^{2}} =32^{2}[/tex]
[tex]{\frac{16}{9}x^{2} +x^{2}} =1,024[/tex]
[tex]{\frac{25}{9}x^{2}=1,024[/tex]
[tex]x=3*32/5=19.2\ in[/tex]
Find the value of y
[tex]y=\frac{4}{3}x[/tex]-------> [tex]y=\frac{4}{3}(19.2)=25.6\ in[/tex]
Find the area of the television
The area of rectangle is equal to
[tex]A=bh[/tex]
substitute
[tex]A=19.2*25.6=491.52\ in^{2}[/tex]