Respuesta :
Assuming a fair 6-sided die, the random variable [tex]X[/tex] giving the number that comes up follows a uniform distribution with PMF
[tex]P(X=x)=\begin{cases}\dfrac16&\text{for }x\in\{1,2,3,4,5,6\}\\\\0&\text{otherwise}\end{cases}[/tex]
The standard deviation of [tex]X[/tex] is the square root of the variance of [tex]X[/tex], [tex]V[X][/tex]. We have a formula for the variance in terms of the expected value, [tex]E[X][/tex]:
[tex]V[X]=E[X^2]-E[X]^2[/tex]
where
[tex]E[X]=\displaystyle\sum_xx\,P(X=x)=\sum_{x=1}^6\frac x6=\frac72[/tex]
[tex]E[X^2]=\displaystyle\sum_xx^2\,P(X=x)=\sum_{x=1}^6\frac{x^2}6=\frac{91}6[/tex]
Then the variance is
[tex]V[X]=\dfrac{91}6-\left(\dfrac72\right)^2=\dfrac{35}{12}[/tex]
so the standard deviation is
[tex]\sqrt{V[X]}=\sqrt{\dfrac{35}{12}}\approx1.71[/tex]
Answer:2.0
Step-by-step explanation:
Just did it on a p e x