Respuesta :
To find the distance you would use the distance formula which is:
[tex]d = \sqrt{(x2-x1)^{2}+(y2-y1)^{2}} = \sqrt{(2-(-5))^{2}+(7-5)^{2}} [/tex]
This equals:
[tex]d = \sqrt{(7)^{2}+(2)^2} = \sqrt{49+4} = \sqrt{53} = 7.2801 [/tex]
[tex]d = \sqrt{(x2-x1)^{2}+(y2-y1)^{2}} = \sqrt{(2-(-5))^{2}+(7-5)^{2}} [/tex]
This equals:
[tex]d = \sqrt{(7)^{2}+(2)^2} = \sqrt{49+4} = \sqrt{53} = 7.2801 [/tex]
Answer:
The answer is C. 7.28
I HOPE THIS HELPS!! :)
Step-by-step explanation: