PART A)
Electrostatic potential at the position of origin is given by
[tex]V = \frac{kq_1}{r_1} + \frac{kq_2}{r_2}[/tex]
here we have
[tex]q_1 = 1.6 \times 10^{-19} C[/tex]
[tex]q_2 = -1.6 \times 10^{-19} C[/tex]
[tex]r_1 = r_2 = 1 m[/tex]
now we have
[tex]V = \frac{Ke}{r} - \frac{Ke}{r}[/tex]
[tex]V = 0[/tex]
Now work done to move another charge from infinite to origin is given by
[tex]W = q(V_f - V_i)[/tex]
here we will have
[tex]W = e(0 - 0) = 0[/tex]
so there is no work required to move an electron from infinite to origin
PART B)
Initial potential energy of electron
[tex]U = \frac{Kq_1e}{r_1} + \frac{kq_2e}{r_2}[/tex]
[tex]U = \frac{9\times 10^9(-1.6\times 10^{-19}(-1.6 \times 10^{-19})}{19} + \frac{9\times 10^9(1.6\times 10^{-19}(-1.6 \times 10^{-19})}{21}[/tex]
[tex]U = (2.3\times 10^{-28})(\frac{1}{19} - \frac{1}{21})[/tex]
[tex]U = 1.15\times 10^{-30}[/tex]
Now we know
[tex]KE = \frac{1}{2}mv^2[/tex]
[tex]KE = \frac{1}{2}(9.1\times 10^{-31}(100)^2[/tex]
[tex]KE = 4.55 \times 10^{-27} kg[/tex]
now by energy conservation we will have
So here initial total energy is sufficient high to reach the origin
PART C)
It will reach the origin