James purchased a $205,000 home with a 30-year mortgage at 5.78%. If makes a $1500 monthly mortgage payment, how many months early will he pay off his mortgage? A. 180 months B. 224 months C. 127 months D. 136 months

Respuesta :

Answer:

James will pay off his mortgage 136 months early.

Step-by-step explanation:

 Given : Amount to be paid(A)= $205000

Interest rate per annum = 5.78% = 0.0578

monthly interest rate(i) = [tex]\frac{0.0578}{12}[/tex]= 0.004817 (approx)

Monthly payment (P) = $1500.

we have to find how many months early will he pay off his mortgage

We know,  [tex]P=\frac{A(i)}{1-(1+i)^(-t)}[/tex]

Substitute values , we get,

[tex]1500=\frac{205000(0.004817)}{1-(1+0.004817)^(-t})[/tex]

[tex]1500=\frac{205000(0.004817)}{1-(1.004817)^(-t)}[/tex]

[tex]1500=\frac{987.416653}{(1-(1.004817)^(-t)}[/tex]

Solving for t ,

[tex]{(1-(1.004817)^t)}=\frac{987.416653}{1500}\\\\\\{(1-(1.004817)^(-t))}=0.65828\\\\\(1.004817)^(-t)=0.341722[/tex]

Applying ln both sides,we get,

[tex]\ln \left(1.004817^(-t)\right)=\ln \left(0.341722\right)[/tex]

[tex]\mathrm{Apply\:log\:rule}:\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)[/tex]

[tex]-t\ln \left(1.004817\right)=\ln \left(0.341722\right)[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}\ln \left(1.004817\right)[/tex]

[tex]\frac{-t\ln \left(1.004817\right)}{\ln \left(1.004817\right)}=\frac{\ln \left(0.341722\right)}{\ln \left(1.004817\right)}[/tex]

[tex]-t=\frac{\ln \left(0.341722\right)}{\ln \left(1.004817\right)}[/tex]

[tex]t=223.44650\dots[/tex]

Thus, t = 224 months.

1 year = 12 month thus, 30 years = 360 months.

Difference = 360 - 224 = 136 months

Thus, James will pay off his mortgage (360-224) 136 months early.



Answer: 136 months

Step-by-step explanation: