Respuesta :
Answer:
[tex]cotx=\frac{cosx}{sinx}[/tex]
[tex]secx=\frac{1}{cosx}[/tex]
[tex]cscx=\frac{1}{sinx}[/tex]
Step-by-step explanation:
1. Keeping on mind that [tex]secx=\frac{1}{cosx}[/tex] and [tex]cotx=\frac{cos}{sin}[/tex], you can rewrite it as following:
[tex]cscx(\frac{1}{cosx})(\frac{cosx}{sinx})[/tex]
2. Then, when you simplify it, you obtain:
[tex]cscx\frac{1}{sinx}[/tex]
3. So, keeping on mind that [tex]cscx=\frac{1}{sinx}[/tex], you have:
[tex]cscx*cscx=csc^{2}x[/tex]
Answer:
Step-by-step explanation:
Using the basic trigonometry identity, we have
[tex]cosecx=\frac{1}{sinx}[/tex], [tex]secx=\frac{1}{cosx}[/tex] and [tex]cotx=\frac{cosx}{sinx}[/tex]
Thus, the given equation is:
[tex]{\text}{cosecx secx cotx}=cosec^2x[/tex]
Taking the LHS of the above equation , we get
=[tex]{\text}{cosecx secx cotx}[/tex]
=[tex]cosecx(\frac{1}{cosx})(\frac{cosx}{sinx})[/tex]
=[tex]cosec^2x[/tex]
=RHS
Hence proved.