Respuesta :

Answer:

Inverse function is: [tex]g^{-1}x=\frac{-x\pm\sqrt{x(x+3)}}{x}[/tex]

Step-by-step explanation:

Given Given the function [tex]g(x)=\frac{3}{x^2+2x}[/tex]

we have to find the inverse function of g

To find inverse following steps are:

Step 1: Replace g(x) with y

Step 2: Replace every x with a y and every y with x  

Step 3: Solve the equation obtained from Step 2 for y.

Step 4: Replace y with g−1(x).

[tex]g(x)=\frac{3}{x^2+2x}[/tex]

To find the inverse, let [tex]y=\frac{3}{x^2+2x}[/tex]

Now, solve for x

[tex]y(x^2+2x)=3[/tex]

[tex]yx^2+2yx-3=0[/tex]

[tex]x=\frac{-2y\pm\sqrt{4y^2-4y(-3)}}{2y}[/tex]

[tex]x=\frac{-2y\pm\sqrt{4y^2+12y}}{2y}[/tex]

[tex]x=\frac{-2y\pm2\sqrt{y^2+3y}}{2y}[/tex]

[tex]x=\frac{-y\pm\sqrt{y(y+3)}}{y}[/tex]

Replace every x with a y and every y with x  , we get

[tex]y=\frac{-x\pm\sqrt{x(x+3)}}{x}[/tex]

Replace y with g−1(x).

[tex]g^{-1}x=\frac{-x\pm\sqrt{x(x+3)}}{x}[/tex]

So inverse function is: [tex]g^{-1}x=\frac{-x\pm\sqrt{x(x+3)}}{x}[/tex]

Answer: A. G^(-1)(x)=-1(+-)(sqreroot)(3/x)+1

Step-by-step explanation:

Got it on edge