Answer:
The length of DE is 14 cm.
Step-by-step explanation:
Given in triangle ABC segment DE is parallel to the side AC . (The endpoints of segment DE lie on the sides AB and BC respectively). we have to find the length of DE.
Given lengths are AC=20cm, AB=17cm, and BD=11.9cm
In ΔBDE and ΔBAC
∠BDE=∠BAC (∵Corresponding angles)
∠BED=∠BCA (∵Corresponding angles)
By AA similarity rule, ΔBDE~ΔBAC
∴their corresponding sides are in proportion
⇒ [tex]\frac{BE}{BC}=\frac{BD}{BA}=\frac{DE}{AC}[/tex]
⇒ [tex]\frac{BD}{BA}=\frac{DE}{AC}[/tex]
⇒ [tex]\frac{11.9}{17}=\frac{DE}{20}[/tex]
⇒ [tex]DE=\frac{20\times 11.9}{17}=14cm[/tex]