Respuesta :

ANSWER

[tex]T_{5} =4480 {x}^{3} [/tex]

EXPLANATION

We want to find the fifth term of the binomial expansion

[tex](2x - 2)^{7} [/tex]

When we compare to

[tex] {(a + b)}^{n} [/tex]
we have n=7, a=2x and b=-2

For the 5th term,

[tex]r + 1 = 5[/tex]

This means that,

[tex]r = 4[/tex]

The fifth term can be found using the formula,

[tex]T_{r+1} = ^nC_r {a}^{n - r} {b}^{r} [/tex]

[tex]T_{5} = ^7C_4 {(2x)}^{7 - 4} {( - 2)}^{4} [/tex]

We substitute the values to obtain,

[tex]T_{5} = ^7C_4 {(2x)}^{3} {( - 2)}^{4} [/tex]

[tex]T_{5} = 35 \times {8x}^{3} \times 16[/tex]

[tex]T_{5} =4480 {x}^{3} [/tex]