Answer:
[tex]\text{The coordinates are}(\frac{-60}{11},\frac{127}{11})[/tex]
Step-by-step explanation:
Given two points A(-12,5) and B(12,29). We have to find the point that divides the line segment AB three-eighths of the way from A to B.
By section formula, when a point C divides a segment AB in the ratio m:n, then the coordinates of point C are
[tex]C(\frac{(mx_2+nx_1)}{(m+n)},\frac{(my_2+ny_1)}{(m+n)})[/tex]
⇒ [tex]C(\frac{(3(12)+8(-12))}{(3+8)},\frac{(3(29)+8(5))}{(3+8)})[/tex]
⇒ [tex]C(\frac{(36-96)}{11)},\frac{(87+40)}{(11)})[/tex]
⇒ [tex]C(\frac{-60}{11},\frac{127}{11})[/tex]
Hence, the coordinates of point C that divides the line segment AB three eighths of the way from A to B are [tex](\frac{-60}{11},\frac{127}{11})[/tex]