Respuesta :

Answer:

tanΘ = - [tex]\frac{12}{5}[/tex]

Step-by-step explanation:

Using the trigonometric identities

• sin²x + cos²x = 1, hence

cosx = ± √(1 - sin²x )

• tanx = [tex]\frac{sinx}{cosx}[/tex]

given sinΘ = [tex]\frac{12}{13}[/tex], then

cosΘ = ±  [tex]\sqrt{1-(12/13)^2}[/tex]

Since Θ is in the second quadrant where cosΘ < 0, then

cosΘ = - [tex]\sqrt{1-\frac{144}{169} }[/tex]

         = - [tex]\sqrt{\frac{25}{169} }[/tex] = - [tex]\frac{5}{13}[/tex]

tanΘ = [tex]\frac{\frac{12}{13} }{\frac{-5}{13} }[/tex]

        = [tex]\frac{12}{13}[/tex] × - [tex]\frac{13}{5}[/tex] = - [tex]\frac{12}{5}[/tex]