Respuesta :

Answer:

f[g(3)] = 100

g[f(5)] = 138

g{f[g(-4)]} = -982

Step-by-step explanation:

f(x) = 4x - 3

g(x) = 8x + 2

a. f[g(3)]

First find g(3) by putting x = 3 in g(x) function

g(3) = 8(3) + 2 = 24 +2 = 26

now put this g(3) = 26 as x in f(x)

f(g(3)) = f(26) = 4(26) - 4 = 104 - 4 = 100

b. g[f(5)]

First lets find f(5)

f(x) = 4x - 3

put x = 5 above

f(5) = 4(5) - 3 = 20 - 3 = 17

put this f(5) = 17 as x in g(x)

g(f(5)) = g(17) = 8(17) + 2 = 138

c.g{f[g(-4)]}

First lets solve the inner most function

g(-4) = 8(-4) +2 = -30

put g(-4) = -30 in f(x) to find f(g(-4))

f(g(-4)) = f(-30) = 4(-30) - 3 = -123

put f(g(-4)) = -123  as x in g(x) to find our complete result

g{f[g(-4)]} = g(-123) = 8(-123) + 2 = -982