Respuesta :
Answer:
Option B. 1.93, -11.93 is the right answer.
Step-by-step explanation:
Here the given equation is x²-23 = 10x and we have to solve the equation for the value of x.
First we simplify the equation to bring in the shape of ax²+bx+c=0
x²-23 = 10x
(x²-23)-10x = 10x-10x
x²-10x -23 = 0
Now we the formula for the value of [tex]x= \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}[/tex]
[tex]x=\frac{10\pm \sqrt{(-10)^{2}-4(1)(-23)}}{2(1)}[/tex]
[tex]x=\frac{-10\pm \sqrt{100+92}}{2}[/tex]
[tex]x= \frac{-10\pm \sqrt{192}}{2}[/tex]
[tex]x=\frac{-10\pm 4\sqrt{12}}{2}[/tex]
[tex]x=-5\pm 2\sqrt{12}[/tex] [tex]= -5\pm (2\times 3.464)[/tex] [tex]= -5\pm 6.93[/tex]
Now x = (-5+6.93) = 1.93
and x = (-5-6.93) = -11.93
Answer:
The correct answer option is a. -1.93, 11.93.
Step-by-step explanation:
We are given the following equation and we are to solve it using the quadratic formula:
[tex]x^2 - 23 = 10x[/tex]
Re-arranging this equation in order of decreasing power:
[tex] x^{2} - 10x - 23 = 0 [/tex]
Using the quadratic formula:
[tex] x = \frac {-b + - \sqrt{b^2 - 4ac} }{2a}[/tex]
Substituting the given values in the formula to get:
[tex]x=\frac{-(-10)+-\sqrt{(-10)^2-4(1)(-23)} }{2(1)}[/tex]
[tex]x=\frac{10+-\sqrt{192} }{2}[/tex]
[tex]x=\frac{10+\sqrt{192} }{2} , x=\frac{10-\sqrt{192} }{2}[/tex]
[tex]x=11.93, x=-1.93[/tex]