Respuesta :

Answer:

We are given that:

[tex]\cos 2x=\tan ^2y---------(1)[/tex]

Now we are asked to show that:

[tex]\cos 2y=\tan ^2x[/tex]

We know that:

[tex]\cos 2y=\dfrac{1-\tan ^2y}{1+\tan ^2y}[/tex]

Hence using equation (1) we get:

[tex]\cos 2y=\dfrac{1-\cos 2x}{1+\cos 2x}--------(2)[/tex]

Also we know that:

[tex]\cos 2x=1-2 \sin ^2x[/tex]

and [tex]\cos 2x=2 \cos ^2x-1[/tex]

so using above two formula in equation (2) we get:

[tex]\cos 2y=\dfrac{1-(1-2\sin ^2x)}{1+2\cos ^2x-1}\\\\\cos 2y=\dfrac{1-1+2\sin ^2x}{2\cos ^2x}\\\\\cos 2y=\dfrac{2\sin ^2x}{2\cos ^2x}\\\\\cos 2y=\tan ^2x[/tex]

( since we know that:

[tex]\tan x=\dfrac{\sin x}{\cos x}[/tex]

)

Hence we have proved that:

[tex]\cos 2y=\tan ^2x[/tex]