Respuesta :
Answer:
Polar form: (√2, 45°)
Step-by-step explanation:
Rectangular form: (1,1)=(x,y)→x=1, y=1
Polar form: (r,α)
[tex]r=\sqrt{x^{2}+ y^{2} }[/tex]
Replacing the known values:
[tex]r=\sqrt{1^{2}+1^{2} }\\ r=\sqrt{1+1}\\ r=\sqrt{2}[/tex]
[tex]\alpha=tan^{-1} (\frac{y}{x})[/tex]
Replacing the known values:
[tex]\alpha =tan^{-1} (\frac{1}{1})\\ \alpha=tan^{-1} (1)\\ \alpha=45^{\°}[/tex]
Then, the polar form is: (r,α)=(√2,45°)
Answer:
Polar form : ( √2 , 45°).
Step-by-step explanation:
Rectangular form is given
( 1 ,1 ) where x = 1, y = 1 .
General form of polar form is ( r , θ ).
r = √x²+y²
r = √1²+1²=√1+1=√2
θ = tan⁻¹(y/x)
θ= tan⁻¹(1/1)
θ= tan⁻¹(1)
θ = 45°
So, the polar form is (√2 , 45).