A force of 200 N is applied to an input piston of cross-sectional area 2 sq. cm pushing it downward 2.8 cm. How far does the output piston of cross-sectional area 12 sq. cm move upward? Show all work.

Respuesta :

Answer: 0.46 cm upward

Explanation:

Given that,

Input force [tex]F_{1} = 200 N[/tex]

Input piston of cross- sectional area [tex]A_{1} = 2\ cm^{2}[/tex]

Output force =  [tex]F_{2}[/tex]

Output piston of cross-section area[tex]A_{2} = 12\ cm^{2}[/tex]

For  output force,

Input pressure = Output pressure

[tex]P_{1} = P_{2}[/tex]

[tex]\dfrac{F_{1}}{A_{1}} = \dfrac{F_{2}}{A_{2}}[/tex]

[tex]F_{2} = \dfrac{F_{1}\times A_{2}}{A_{1}}[/tex]

[tex]F_{2} = \dfrac{200\ N\times 12\ cm^{2}}{2\ cm^{2}}[/tex]

[tex]F_{2} = 1200 N[/tex]

For upward displacement,

The work done

[tex]W_{1} = W_{2}[/tex]

[tex]F_{1}\times d_{1} = F_{2}\times d_{2}[/tex]

[tex]d_{2} = \dfrac{F_{1}\times d_{1}}{F_{2}}[/tex]

[tex]d_{2} = \dfrac{200\ N\times 2.8\ cm}{1200\ N}[/tex]

[tex]d_{2} = 0.46\ cm[/tex]

Hence, the piston moves 0.46 cm upward.