contestada

During takeoff, the sound intensity level of a jet engine is 170dB at a distance of 34 m. what's the sound intensity level at a distance of 1.0 km?

Respuesta :

Answer: 140.629dB

Explanation:

Sound intensity level [tex]\beta[/tex] is a logarithmic quantity and is defined as:

[tex]\beta=(10dB) log(\frac{I}{I_{o}})[/tex]

Where:

[tex]I[/tex] is the sound intensity

[tex]I_{o}=10^{-12}W/m^2[/tex] is the reference sound intensity

In this case we are given a sound intensity [tex]\beta_{1}=170dB[/tex] (during takeoff at a distance [tex]r_{1}=34m[/tex]):

[tex]\beta_{1}=(10dB) log(\frac{I_{1}}{I_{o}})=170dB[/tex] (1)

Now, from (1) we have to find [tex]I_{1}[/tex].

Dividing both sides of the equation by [tex]10dB[/tex]:

[tex]\frac{10dB}{10dB} log(\frac{I_{1}}{I_{o}})=\frac{170dB}{10dB}[/tex] (2)

[tex]log(\frac{I_{1}}{I_{o}})=17[/tex] (3)

Applying logarithm properties on both sides:

[tex]\frac{I_{1}}{I_{o}}=10^{17}[/tex] (4)

Isolating [tex]I_{1}[/tex]:

[tex]I_{1}=10^{17}I_{o}[/tex] (5)

[tex]I_{1}=10^{17}(10^{-12}W/m^2)[/tex] (6)

[tex]I_{1}=100000W/m^2[/tex] (7) This is the sound intensity at a distance of 34 m

On the other hand, we know the sound intensity[tex]I[/tex] is inversely proportional to the square of the distance [tex]r[/tex]:

[tex]I\propto\frac{1}{r^2}[/tex]

This means:

[tex]I_{1}r_{1}^2=I_{2}r_{2}^2[/tex]  (7)

Where [tex]r_{2}=1km=1000m[/tex]

Finding [tex]I_{2}[/tex] from (7):

[tex]I_{2}=\frac{I_{1}r_{1}^2}{r_{2}^2}[/tex]  (8)

[tex]I_{2}=\frac{(100000W/m^2)(34m)^2}{(1000m)^2}[/tex]  (9)

[tex]I_{2}=115.6W/m^2[/tex]  (9) This is the sound intensity at a distance of 1km

Now, knowing the value of [tex]I_{2}[/tex] we will be able to find the sound intensity level [tex]\beta_{2}[/tex] at a distance of 1km:

[tex]\beta_{2}=(10dB) log(\frac{I_{2}}{I_{o}})[/tex] (10)

[tex]\beta_{2}=(10dB) log(\frac{115.6W/m^2}{100000W/m^2})[/tex] (11)

Finally:

[tex]\beta_{2}=140.629dB[/tex] (12) This is the sound intensity level at a distance of 1 km.