[tex]\bf y=\cfrac{2x^2-10x}{\sqrt{x}}\implies y=\cfrac{2x^2-10x}{x^{\frac{1}{2}}} \\\\\\ \cfrac{dy}{dx}=\stackrel{\textit{quotient rule}}{\cfrac{(4x-10)(\sqrt{x})~~-~~(2x^2-10x)\left( \frac{1}{2}x^{-\frac{1}{2}} \right)}{\left( x^{\frac{1}{2}} \right)^2}} \\\\\\ \cfrac{dy}{dx}=\cfrac{(4x-10)(\sqrt{x})~~-~~(2x^2-10x)\left( \frac{1}{2\sqrt{x}} \right)}{\left( x^{\frac{1}{2}} \right)^2} \\\\\\ \cfrac{dy}{dx}=\cfrac{(4x-10)(\sqrt{x})~~-~~\left( \frac{2x^2-10x}{2\sqrt{x}} \right)}{x}[/tex]
[tex]\bf\cfrac{dy}{dx}=\cfrac{(4x-10)(\sqrt{x})~~-~~\left( \frac{2x^2-10x}{2\sqrt{x}} \right)}{x} \\\\\\ \cfrac{dy}{dx}=\cfrac{ \frac{(4x-10)(\sqrt{x})(2\sqrt{x})~~-~~(2x^2-10x)}{2\sqrt{x}}}{x} \\\\\\ \cfrac{dy}{dx}=\cfrac{(4x-10)(\sqrt{x})(2\sqrt{x})~~-~~(2x^2-10x)}{2x\sqrt{x}}[/tex]
[tex]\bf \cfrac{dy}{dx}=\cfrac{(4x-10)2x~~-~~(2x^2-10x)}{2x\sqrt{x}}\implies \cfrac{dy}{dx}=\cfrac{8x^2-20x~~-~~(2x^2-10x)}{2x\sqrt{x}} \\\\\\ \cfrac{dy}{dx}=\cfrac{8x^2-20x~~-~~2x^2+10x}{2x\sqrt{x}} \implies \cfrac{dy}{dx}=\cfrac{6x^2-10x}{2x\sqrt{x}} \\\\\\ \cfrac{dy}{dx}=\cfrac{2x(3x-5)}{2x\sqrt{x}}\implies \cfrac{dy}{dx}=\cfrac{3x-5}{\sqrt{x}}[/tex]