Respuesta :
We start by proving the statement is true for [tex]n=1[/tex]. In this case, the left hand side is simply:
[tex](3\times 1-2)^2 = 1.[/tex]
The right hand side is:
[tex]\dfrac{1\times (6 \times 1^2 - 3\times 1 -1)}{2} = \dfrac{2}{2}=1.[/tex]
So the property holds for [tex]n=1[/tex].
Now we assume the property is valid for some [tex]n[/tex] and prove that it implies that it is also valid for [tex]n+1[/tex]. That means we shall obtain:
[tex]1^2 + 4^2 + 7^2 + \dots + (3n-2)^2 + [3(n+1)-2]^2 = \dfrac{(n+1)[6(n+1)^2-3(n+1)-1]}{2}.[/tex]
We start by writing the property for [tex]n+1[/tex] and recognize that we've only added an extra term:
[tex]\underbrace{1^2 + 4^2 + 7^2 + \dots + (3n-2)^2}_{=\dfrac{n(6n^2-3n-1)}{2}} + [3(n+1)-2]^2.[/tex]
We now expand the square and merge everything together in a single fraction:
[tex]\dfrac{n(6n^2-3n-1)}{2} + [3(n+1)-2]^2 = \dfrac{6n^3-3n^2-n}{2} + (3n+1)^2 = \\\\= \dfrac{6n^3-3n^2-n}{2} + (9n^2+6n+1) = \dfrac{6n^3 - 3n^2 -n + 18n^2+12n+2}{2} =\\\\= \dfrac{6n^3+15n^2+11n+2}{2}.[/tex]
Since the desired expression has a [tex]n+1[/tex] facto, we may now divide the numerator by [tex]n+1[/tex], using, for instance, Ruffini's rule, in order to find it:
[tex]\begin{array}{c|ccc|c} & 6 & 15 & 11 & 2\\ -1 & &-6 & -9 & -2 \\ -&-&-&-&-\\ & 6 & 9&2&0\end{array}[/tex]
So we get:
[tex]\dfrac{6n^3+15n^2+11n+2}{2} = \dfrac{(n+1)(6n^2+9n+2)}{2}.[/tex]
We now add and subtract [tex]12n[/tex] and [tex]6[/tex] in order to obtain the form corresponding to [tex](n+1)^2[/tex], since we know that it must appear:
[tex]6n^2+9n+2 = 6n^2 + 12n + 6 - 12n - 6 + 9n+2 =\\\\=6\underbrace{(n^2+2n+1)}_{=(n+1)^2}-3n-4 = 6(n+1)^2 - 3n - 3 -1 = 6(n+1)^2 - 3(n+1)-1.[/tex]
So we finally got:
[tex]1^2 + 4^2 + 7^2 + \dots + (3n-2)^2 + [3(n+1)-2]^2 = \dfrac{(n+1)[6(n+1)^2-3(n+1)-1]}{2},[/tex]
which is the desired result. So we proved that the statement is true for every integer [tex]n \geq 1[/tex].