Respuesta :
Solution:
tan (theta)[tex]=\frac{-12}{5}[/tex][tex]=\frac{\text{Perpendicular}}{\text{Base}}[/tex]
Cosec(theta)[tex]=\frac{-13}{12}[/tex][tex]=\frac{\text{Hypotenuse}}{\text{Altitude}}[/tex]
In right Triangle,
using Pythagoras theorem
(Hypotenuse)²= (Base)² + (Altitude)²
⇒ (Hypotenuse)²= (12)² + (5)²
⇒Hypotenuse= √(144 +25)
⇒Hypotenuse= 13 cm
As, the value of tan(theta)[tex]=\frac{-12}{5}[/tex] is true if Theta lies in Second Quadrant, but it is not true for Cosec(theta)[tex]=\frac{-13}{12}[/tex] ,if theta lies in second Quadrant, because value of Cosec(theta) is positive in second Quadrant ,irrespective of fact that Terminal side lies in Second Quadrant.
So, The statement tan (theta)= -12/5, and Cosec (theta)=-13/12, and the terminal point determined by theta is in quadrant two is Incorrect.
Answer:
cannot be true because csc theta is greater than zero in quadrant 2
Step-by-step explanation:
apex users good luck