Respuesta :

Solution:

tan (theta)[tex]=\frac{-12}{5}[/tex][tex]=\frac{\text{Perpendicular}}{\text{Base}}[/tex]

Cosec(theta)[tex]=\frac{-13}{12}[/tex][tex]=\frac{\text{Hypotenuse}}{\text{Altitude}}[/tex]

In right Triangle,

using Pythagoras theorem

(Hypotenuse)²= (Base)² + (Altitude)²

⇒ (Hypotenuse)²= (12)² + (5)²

⇒Hypotenuse= √(144 +25)

⇒Hypotenuse= 13 cm

As, the value of tan(theta)[tex]=\frac{-12}{5}[/tex] is true if Theta lies in Second Quadrant, but it is not true for Cosec(theta)[tex]=\frac{-13}{12}[/tex]  ,if theta lies in second Quadrant, because value of Cosec(theta) is positive in second Quadrant ,irrespective of fact that Terminal side lies in Second Quadrant.

So,  The statement tan (theta)= -12/5, and Cosec (theta)=-13/12, and the terminal point determined by theta is in quadrant two is Incorrect.

Answer:

cannot be true because csc theta is greater than zero in quadrant 2

Step-by-step explanation:

apex users good luck