Answer:
[tex]f(x)=g(x)[/tex] only at x= 0 and x= 1. They are not equal at x= 3.
Step-by-step explanation:
We have the functions, [tex]f(x)=2x+1[/tex] and [tex]g(x)=2x^2+1[/tex]
Substituting the values of x in the given function, we see that,
[tex]f(x)=2x+1[/tex] [tex]g(x)=2x^2+1[/tex]
x= 0 f(0)= 2×0+1= 1 g(0)= 2×(0^2)+1= 1
x= 1 f(1)= 2×1+1= 3 g(1)= 2×(1^2)+1= 2+1 = 3
x= 3 f(3)= 2×3+1= 7 g(3)= 2×(3^2)+1= 18+1 = 19
Thus, from the graphs below and the above calculations, we have,
[tex]f(x)=g(x)[/tex] only at x= 0 and x= 1.