Answer:
See graph
Step-by-step explanation:
We want to graph the function [tex]f(x)=x^2-2x-3[/tex].
Let us rewrite this function in the vertex form so that we can graph it easily.
We achieve this by completing the square as follows;
[tex]f(x)=x^2-2x+(-1)^2-(-1)^2-3[/tex]
[tex]\Rightarrow f(x)=(x-1)^2-1-3[/tex].
[tex]\Rightarrow f(x)=(x-1)^2-4[/tex].
Comparing to [tex]f(x)=a(x-h)^2+k[/tex], we have [tex]a=1\:>\:0[/tex],this means the graph will open up.
where [tex](h,k)=(1,4)[/tex] is the vertex of the quadratic graph.
To find the y-intercept we put [tex]x=0[/tex] into the function to get,
[tex]f(0)=(0-1)^2-4=-3[/tex].
To find the x-intercept, we put [tex]f(x)=0[/tex].
[tex](x-1)^2-4=0[/tex].
[tex](x-1)^2=4[/tex].
[tex]x-1=\pm \sqrt{4}[/tex].
[tex]x-1=\pm 2[/tex].
[tex]x=1\pm2[/tex].
[tex]x=-1,x=3[/tex]
With the nature of graph in mind, taking into consideration, the vertex and the intercepts, we draw the graph to obtain the quadratic graph in the attachment.