Respuesta :
Answer: The answers are given below.
Step-by-step explanation: The calculations are as follows.
(1) We have in the given right-angled triangle,
[tex]\tan 30^\circ=\dfrac{10}{x}\\\\\Rightarrow \dfrac{1}{\sqrt3}=\dfrac{10}{x}\\\\\Rightarrow x=10\sqrt3,[/tex]
and
[tex]y^2=(10)^2+x^2=100+(10\sqrt3)^2=100+300=400\\\\\Rightarrow y=20.[/tex]
∴ x = 10√3 and y = 20.
(2) We have in the given right-angled triangle,
[tex]\cos 60^\circ=\dfrac{2}{x}\\\\\Rightarrow \dfrac{1}{2}=\dfrac{2}{x}\\\\\Rightarrow x=4,[/tex]
and
[tex]y^2=x^2-2^2=16-4=12\\\\\Rightarrow y=2\sqrt3.[/tex]
∴ x = 4 and y = 2√3.
(3) We have in the given right-angled triangle,
[tex]\cos 30^\circ=\dfrac{7}{y}\\\\\Rightarrow \dfrac{\sqrt3}{2}=\dfrac{7}{y}\\\\\Rightarrow y=\dfrac{14\sqrt3}{3},[/tex]
and
[tex]\sin 30^\circ=\dfrac{7}{x}\\\\\Rightarrow \dfrac{1}{2}=\dfrac{7}{x}\\\\\Rightarrow x=14.[/tex]
∴ x = 14 and y = 14√3.
(4) We have in the given right-angled triangle,
[tex]\sin 30^\circ=\dfrac{x}{6}\\\\\Rightarrow \dfrac{1}{2}=\dfrac{x}{6}\\\\\Rightarrow x=3,[/tex]
and
[tex]\cos 30^\circ=\dfrac{y}{6}\\\\\Rightarrow \dfrac{\sqrt3}{2}=\dfrac{y}{6}\\\\\Rightarrow y=3\sqrt3.[/tex]
∴ x = 3 and y = 3√3.
(5) We have in the given right-angled triangle,
[tex]\sin 30^\circ=\dfrac{y}{10}\\\\\Rightarrow \dfrac{1}{2}=\dfrac{y}{10}\\\\\Rightarrow y=5,[/tex]
and
[tex]\cos 30^\circ=\dfrac{x}{6}\\\\\Rightarrow \dfrac{\sqrt3}{2}=\dfrac{x}{10}\\\\\Rightarrow y=5\sqrt3.[/tex]
∴ x = 5 and y = 5√3.
(6) We have in the given right-angled triangle,
[tex]\sin 30^\circ=\dfrac{x}{8}\\\\\Rightarrow \dfrac{1}{2}=\dfrac{x}{8}\\\\\Rightarrow x=4,[/tex]
and
[tex]\cos 30^\circ=\dfrac{y}{8}\\\\\Rightarrow \dfrac{\sqrt3}{2}=\dfrac{y}{8}\\\\\Rightarrow y=4\sqrt3.[/tex]
∴ x = 4 and y = 4√3.
(7) We have in the given right-angled triangle,
[tex]\cos 30^\circ=\dfrac{7\sqrt3}{y}\\\\\Rightarrow \dfrac{\sqrt3}{2}=\dfrac{7\sqrt3}{y}\\\\\Rightarrow y=14,[/tex]
and
[tex]\sin 30^\circ=\dfrac{x}{y}\\\\\Rightarrow \dfrac{1}{2}=\dfrac{x}{14}\\\\\Rightarrow x=7.[/tex]
∴ x = 7 and y = 14.
(8) We have in the given right-angled triangle,
[tex]\cos 30^\circ=\dfrac{6\sqrt3}{y}\\\\\Rightarrow \dfrac{\sqrt3}{2}=\dfrac{6\sqrt3}{y}\\\\\Rightarrow y=12[/tex]
and
[tex]\sin 30^\circ=\dfrac{x}{y}\\\\\Rightarrow \dfrac{1}{2}=\dfrac{x}{12}\\\\\Rightarrow x=6[/tex]
∴ x = 6 and y = 12.
(9) We have in the given right-angled triangle,
[tex]\cos 30^\circ=\dfrac{\sqrt3}{y}\\\\\Rightarrow \dfrac{\sqrt3}{2}=\dfrac{\sqrt3}{y}\\\\\Rightarrow y=2[/tex]
and
[tex]\sin 30^\circ=\dfrac{x}{y}\\\\\Rightarrow \dfrac{1}{2}=\dfrac{x}{2}\\\\\Rightarrow x=4.[/tex]
∴ x = 4 and y = 2.
Thus, all are completed.