Respuesta :
Answer:
Given the radical form: [tex]4\sqrt{7^3}[/tex]
Use the exponent rules:
[tex]\sqrt[n]{a^m} = (a^m)^{\frac{1}{n}} = a^{\frac{m}{n}}[/tex]
we can write [tex]\sqrt{7^3}[/tex] as:
[tex]\sqrt{7^3} = (7^3)^{\frac{1}{2}} = 7^{\frac{3}{2}}[/tex]
then;
[tex]4\sqrt{7^3}[/tex] = [tex]4 \cdot 7^{\frac{3}{2}}[/tex]
Therefore, [tex]4\sqrt{7^3}[/tex] in exponential form is [tex]4 \cdot 7^{\frac{3}{2}}[/tex]