Answer:
[tex]x=2+i\sqrt{11}[/tex]
[tex]x=2-i\sqrt{11}[/tex]
Step-by-step explanation:
we have
[tex]x^{2} =4x-15[/tex] -------> [tex]x^{2}-4x+15=0[/tex]
we know that
The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to
[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]x^{2}-4x+15=0[/tex]
so
[tex]a=1\\b=-4\\c=15[/tex]
substitute in the formula
[tex]x=\frac{-(-4)(+/-)\sqrt{-4^{2}-4(1)(15)}} {2(1)}[/tex]
[tex]x=\frac{4(+/-)\sqrt{16-60}} {2}[/tex]
Remember that
[tex]i=\sqrt{-1}[/tex]
[tex]x=\frac{4(+/-)\sqrt{-44}} {2}[/tex]
[tex]x=\frac{4(+/-)2i\sqrt{11}} {2}[/tex]
[tex]x=\frac{4(+)2i\sqrt{11}}{2}=2+i\sqrt{11}[/tex]
[tex]x=\frac{4(-)2i\sqrt{11}}{2}=2-i\sqrt{11}[/tex]