Answer:
[tex]a\in (-\infty,1]\cup [3,\infty).[/tex]
Step-by-step explanation:
Consider the function [tex]y=x^2+(a-2)x+0.25.[/tex] This function represents the parabola with branches that go in positive y-direction (because the leading coefficient is 1>0).
The disriminant of this quadratic function is
[tex]D=(a-2)^2-4\cdot 1\cdot 0.25=a^2-4a+4-1=a^2-4a+3.[/tex]
When the discriminant is ≥0, the quadratic function will take nonnegative values, thus,
[tex]a^2-4a+3\ge 0,\\ \\D=(-4)^2-4\cdot 1\cdot 3=16-12=4,\\ \\a_{1,2}=\dfrac{-(-4)\pm \sqrt{4}}{2\cdot 1}=\dfrac{4\pm 2}{2}=1,\ 3,[/tex]
then
[tex](a-1)(a-3)\ge 0,\\ \\a\in (-\infty,1]\cup [3,\infty).[/tex]