Answer:
The derivative of the function does not exist.
Step-by-step explanation:
The alternative form of a derivative is given by:
[tex]f'(c)= \lim_{x \to c} \dfrac{f(x)-f(c)}{x-c}[/tex]
Our function is defined as:
h(x)=|x+8|
i.e. h(x)= -(x+8) when x+8<0
and x+8 when x+8≥0
i.e. h(x)= -x-8 when x<-8
and x+8 when x≥-8
Hence now we find the derivative of the function at c=-8
i.e. we need to find the Left hand derivative (L.H.D.) and Right hand derivative (R.H.D) of the function.
The L.H.D at a point 'a' is calculated as:
[tex]\lim_{x \to a^-} \dfrac{f(x)-f(a)}{x-a}\\\\=\lim_{h \to0} \dfrac{f(a-h)-f(a)}{a-h-a}= \lim_{h\to 0} \dfrac{f(a-h)-f(a)}{-h}[/tex]
Similarly R.H.D is given by:
[tex]\lim_{x \to a^+} \dfrac{f(x)-f(a)}{x+a}\\\\=\lim_{h \to 0} \dfrac{f(a+h)-f(a)}{a+h-a}= \lim_{h\to 0} \dfrac{f(a+h)-f(a)}{h}[/tex]
Now for L.H.D we have to use the function h(x) =-x-8
and for R.H.D. we have to use the function h(x)=x+8
L.H.D.
we have a=-8
[tex]\lim_{x \to (-8)^-} \dfrac{h(x)-h(-8)}{x-(-8)}\\\\= \lim_{h \to0} \dfrac{h(-8-h)-h(-8)}{-8-h-(-8)}= \lim_{h\to 0} \dfrac{h(-8-h)-h(-8)}{-h}[/tex]
= [tex]\lim_{h \to 0} \dfrac{8+h-8-0}{-h}= \lim_{h \to 0}\dfrac{h}{-h}=-1[/tex]
similarly for R.H.D.
[tex]\lim_{x \to (-8)^+} \dfrac{h(x)-h(-8)}{x-(-8)}\\\\=\lim_{h \to 0} \dfrac{h(-8+h)-h(-8)}{-8+h-(-8)}= \lim_{h\to 0} \dfrac{h(-8+h)-h(-8)}{h}[/tex]
[tex]\lim_{h \to 0} \dfrac{-8+h+8-0}{h}=\lim_{h \to 0}\dfrac{h}{h}=1[/tex]
Now as L.H.D≠R.H.D.
Hence, the function is not differentiable.