1. Dividing the interval [0, 3] into 6 intervals gives us the partition
[0, 1/2], [1/2, 1], [1, 3/2], ..., [5/2, 3]
Each subinterval has length 1/2. The right endpoints are then
[tex]\left\{\dfrac12,1,\dfrac32,\ldots,3\right\}[/tex]
which are given by the sequence
[tex]x_i=\dfrac i2\text{ for }1\le i\le6[/tex]
Then the integral is approximated by the Riemann sum,
[tex]\displaystyle\int_0^3x^3-6x\,\mathrm dx\approx\sum_{i=1}^6\frac{{x_i}^3-6x_i}2=\dfrac{-\frac{23}8-5-\frac{45}8-4+\frac58+9}2=-\frac{63}{16}\approx-3.938[/tex]
2. The Riemann sum can be represented by as the sum of the areas of rectangles whose dimensions are determined by the chosen partition and sample points in order to approximate the area between the curve [tex]f(x)[/tex] and the [tex]x[/tex]-axis.
3. With [tex]n[/tex] subintervals, we get the partition
[tex]\left[0,\dfrac3n\right],\left[\dfrac3n,\dfrac6n\right],\left[\dfrac6n,\dfrac9n\right],\ldots,\left[\dfrac{3(n-1)}n,3\right][/tex]
Each subinterval has length [tex]\dfrac3n[/tex], and the (right-endpoint) Riemann sum is
[tex]\displaystyle\sum_{i=1}^n\frac3n\left(\left(\frac{3i}n\right)^3-6\left(\frac{3i}n\right)\right)[/tex]
[tex]=\displaystyle\frac{27}{n^4}\sum_{i=1}^n3i^3-2in^2[/tex]
4. First compute the antiderivative:
[tex]\displaystyle\int x^3-6x\,\mathrm dx=\dfrac{x^4}4-3x^2+C[/tex]
Then by the FTC, the definite integral is
[tex]\displaystyle\int_0^3x^3-6x\,\mathrm dx=\left(\frac{3^4}4-3^3\right)-\left(\frac04-0\right)=-\dfrac{27}4[/tex]
5. The integral gives the exact area of the bounded region.