Which expression is equivalent to ? Assume .

[tex]\text{Use}\ \sqrt[n]{a^m}=a^{\frac{m}{n}}\ \text{and}\ a^{-1}=\dfac{1}{a}\\\\\dfrac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}=\left(x^{\frac{2}{7}\right)\left(\dfrac{1}{y^\frac{3}{5}}\right)=\left(x^{\frac{2}{7}}\right)\left(y^{-\frac{3}{5}}\right)[/tex]
Answer: [tex](x^{\dfrac{2}{7}})(y^{-\dfrac{3}{5}})[/tex]
Step-by-step explanation:
The given expression : [tex]\dfrac{\sqrt[7]{x^2}}{\sqrt[5]{y^3} }[/tex]
Law of radicals :-
[tex]\sqrt[n]{a}=a^{\frac{1}{n}}\\\\\sqrt[n]{a^m}=a^{\frac{m}{n}}[/tex]
Law of exponent:
[tex]\dfrac{1}{a^n}=a^{-n}[/tex]
Using the above law of radicals and law of exponent we have,
[tex]\dfrac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}\\\\=(x^{\frac{2}{7}})(y^{-\frac{3}{5}})[/tex]