Respuesta :
Answer:
k = -2 , k = -1 , k = 0.56 , k = -3.56
Step-by-step explanation:
First find the x and y intercepts of the triangle formed :
To find x - intercept, setting y = 0
[tex]\implies 0 = 0.5\times (x-3)\cdot (x+k)\\\implies x=3\text{ or }x=-k[/tex]
Now to find y - intercept, setting x = 0
[tex] \implies y=0.5\times (0-3)\cdot (0+k)\\\\\implies y=-1.5\cdot k[/tex]
Now, base = 3 + k, height = y = -1.5·k and Area = 1.5 square units
[tex]\bf\text{Area of triangle = }\frac{1}{2}\times base\times height\\\\1.5=\frac{1}{2}\times (3+k)\times (-1.5\cdot k)\\\\\text{On solving the above equation,}\\\\\implies k=-2\text{ or }k=-1[/tex]
Now, to find y-intercepts which lies right to the point x = 3
[tex]\bf\text{Area of triangle = }\frac{1}{2}\times base\times height\\\\1.5=\frac{1}{2}\times (-3-k)\times (-1.5\cdot k)\\\\\text{On solving the above equation,}\\\\\implies k=0.56\text{ or }k=-3.56[/tex]
So, k has four possible values ⇒ k = -2 , k = -1 , k = 0.56 , k = -3.56

Answer:
The possible values of k are -0.56, -3.56, -2 and -1.
Step-by-step explanation:
We have the equation of the parabola, [tex]y=0.5(x-3)(x+k)[/tex].
Substituting x=0, we get that [tex]y=0.5\times (-3)\times k[/tex] i.e. y = -1.5k
So, the y-intercept is (0,-1.5k).
Thus, the height of the triangle becomes |-1.5k| = 1.5k
Again, substituting y=0, [tex]0=0.5(x-3)(x+k)[/tex] i.e. [tex]0=(x-3)(x+k)[/tex] i.e. x=3 and x=-k
So, the x-intercepts are (3,0) and (-k,0).
Thus, the base of the triangle is 3+k if k>-3 or -3-k if k<-3.
We see that 'k' cannot be 0 or -3 as if k=0, then height = 0, which is not possible. If k= -3, then the base = 0, which is also not possible.
As, area of a triangle = [tex]\frac{1}{2}\times (base)\times (height)[/tex].
Substituting the values, we get,
1.5=[tex]\frac{1}{2}\times (3+k)\times (1.5k)[/tex]
i.e. [tex]3=4.5k+1.5k^2[/tex]
i.e. k = -0.56 and k = -3.56
or
1.5=[tex]\frac{1}{2}\times (-3-k)\times (1.5k)[/tex]
i.e. [tex]3=-4.5k-1.5k^2[/tex]
i.e. k = -2 and k = -1.
Thus, the possible values of k are -0.56, -3.56, -2 and -1.