A circle has radius of 18 cm. Find the area of the smaller of the two regions determined by a chord with length of 18 square root of 2 cm. (Hint: Look for right triangles using Pythagorean Theorem Converse) plz help

Respuesta :

Answer:  [tex]81 ( \pi - 2)\text { square cm}[/tex]

Step-by-step explanation:

Let O be the radius of the circle and AB be the chord of length 18√2 cm.

Since, the radius of the circle is 18 cm,

Therefore, OA = OB = 18 cm,

Let, N be the mid point of the chord then,

AN = NB = 9√2 cm

In triangle AON,

Since, [tex]\angle ANO = 90^{\circ}[/tex] ( by the property of circle)

[tex]\angle AON = sin^{-1} (\frac{9\sqrt{2} }{18} )[/tex]

[tex]\angle AON = sin^{-1} (\frac{\sqrt{2} }{2} )[/tex]

[tex]\angle AON = sin^{-1} (\frac{1}{\sqrt{2} } )[/tex]

[tex]\angle AON = 45^{\circ}[/tex]

Similarly, in triangle BON,

[tex]\angle BON = 45^{\circ}[/tex]

⇒ [tex]\angle AOB = \angle AON +\angle BON = 45^{\circ}+45^{\circ} = 90^{\circ}[/tex]

Therefore, the area of sector AOB = [tex]\frac{90^{\circ}}{360^{\circ}} \pi (18)^2[/tex]

= [tex]\frac{1}{4} \pi (18)^2[/tex]

= [tex]81\pi \text{ square cm}[/tex]

Area of triangle AOB = [tex]\frac{1}{2} \times ON\times AB[/tex]

= [tex]\frac{1}{2} \times \sqrt{OA^2-AN^2}\times AB[/tex]

= [tex]\frac{1}{2} \times \sqrt{324-162}\times 18\sqrt{2}[/tex]

= [tex]\frac{1}{2} \times \sqrt{162}\times 18\sqrt{2}[/tex]

= [tex]\frac{1}{2} \times \sqrt{2}\times \sqrt{81}\times 18\sqrt{2}[/tex]

= [tex]162\text{ square cm}[/tex]

Therefore, the area of smaller region by the chord AB = Area of sector AOB - Area of triangle AOB = [tex]81\pi - 162[/tex]

= [tex]81 ( \pi - 2)\text { square cm}[/tex]







Ver imagen parmesanchilliwack
ACCESS MORE