Respuesta :
Answer:
[tex]-12x^{2}y[/tex] and [tex]4x^{2}y[/tex]
Step-by-step explanation:
We are given the term [tex]3x^{2}y[/tex].
It is known that, 'A monomial is an algebraic expression consisting of one term'.
So, we add the given options to [tex]3x^{2}y[/tex].
1. [tex]3x^{2}y+3xy=3xy(x+1)[/tex]
2. [tex]3x^{2}y-12x^{2}y=-9x^{2}y[/tex]
3. [tex]3x^{2}y+2x^{2}y^{2}=x^{2}y(3+2y)[/tex]
4. [tex]3x^{2}y+7xy^{2}=xy(3x+7y)[/tex]
5. [tex]3x^{2}y-10x^{2}=x^{2}(3y-10)[/tex]
6. [tex]3x^{2}y+4x^{2}y=7x^{2}y[/tex]
7. [tex]3x^{2}y+3x^{3}=3x^{2}(y+x)[/tex]
As, we can see that only option 2 and 6 results in an expression having one term.
Thus, adding [tex]-12x^{2}y[/tex] and [tex]4x^{2}y[/tex] to [tex]3x^{2}y[/tex] results in a monomial.
Answer: [tex]-12x^2y\ and\ 4x^2y[/tex]
Step-by-step explanation:
Given monomial: [tex]3x^2y[/tex], here deg of x is 2 and deg of y is 1
From the options, we have [tex]-12x^2y\ and\ 4x^2y[/tex] polynomials [with deg of x is 2 and deg of y is 1]which are like to the given polynomial.
We know that if we add like monomials, then we get result as mnomila.
Rest of other monomials are unlike to the given monomial, which will result into binomial.
[tex]1)3x^2y+3xy\\2)-12x^2y+3x^y=-9x^2y\\3)2x^2y^2+3x^2y\\4)7x^y+3x^2y\\5)-10x^2+3x^2y\\6)4x^2y+3x^2y=7x^2y\\7)3x^3+3x^2y[/tex]