Respuesta :

Answer:

[tex]P(A|B)=\frac{40}{49}[/tex]

Step-by-step explanation:

We know that

the general equation for conditional probability is

[tex]P(A|B)=\frac{P(AnB)}{P(B)}[/tex]

we are given

[tex]P(AnB)=\frac{5}{7}[/tex]

[tex]P(B)=\frac{7}{8}[/tex]

now, we can plug values

[tex]P(A|B)=\frac{\frac{5}{7}}{\frac{7}{8}}[/tex]

now, we can simplify it

[tex]P(A|B)=\frac{5\cdot \:8}{7\cdot \:7}[/tex]

so, we get

[tex]P(A|B)=\frac{40}{49}[/tex]

Answer:

[tex]\frac{40}{49}[/tex]

Step-by-step explanation:

We are given the probabilities P(A∩B)=5/7 and P(B)=7/8 and we are to find P(A|B) according to the general equation for conditional probability.

So we will use the following formula for this:

P(A|B) = P(A∩B) / P(B)

Substituting the given values in the above formula to get:

P(A|B) = [tex]\frac{\frac{5}{7} }{\frac{7}{8} }[/tex] = [tex]\frac{5}{7} * \frac{8}{7}[/tex]

P(A|B) = [tex]\frac{40}{49}[/tex]

ACCESS MORE