Respuesta :

Answer:

c

Step-by-step explanation:

using the law of logarithms

log[tex]x^{n}[/tex] ⇔ nlogx

given 5([tex](10)^{4x}[/tex] = 75 ( divide both sides by 5 )

[tex](10)^{4x}[/tex] = 15 ( take log of both sides )

log[tex]10^{4x}[/tex] = log15

4xlog10 = log15 ← log10 = 1

4x = log15 ( divide both sides by 4 )

x = [tex]\frac{log15}{4}[/tex] → c



ACCESS MORE