Vector u= <9,-2> v=<-1,7> w=<-5,-8> arrange the vector operations in ascending order of their magnitudes of their resultant vectors

Operations:
1.) -1/2u + 5v
2.) 1/6 (u+2v-w)
3.)5/2u-3w
4.)u-3/2v+2w
5.)-4v+1/2w
6.)3u-v-5/2w

Respuesta :

Answer:

The ascending order is:

2) ,4), 5) ,1) ,6) ,3)

Step-by-step explanation:

We are given u=<9,-2> , v=<-1,7> , w=<-5,-8>

The magnitude of some vector <a,b> is given by:  [tex]\sqrt{a^2+b^2}[/tex]

we will find the representation of each of the vectors in order to calculate their magnitudes and arrange them in the ascending order.

1) [tex]\dfrac{-1}{2}u+5v[/tex]

on calculating the value of this operation:

[tex]\dfrac{-1}{2}<9,-2>+5<-1,7>=<\dfrac{-9}{2},1>+<-5,35>\\  \\=<\dfrac{-19}{2},36>[/tex]

Hence, the magnitude of  [tex]\dfrac{-1}{2}u+5v[/tex] is:

37.2324

2) [tex]\dfrac{1}{6}(u+2v-w)[/tex]

the value of this operation is given as:

[tex]\dfrac{1}{6}(<9,-2>+<-2,14>-<-5,-8>)\\ \\=\dfrac{1}{6} (<9,-2>+<-2,14>+<5,8>)\\\\=\dfrac{1}{6} (<12,20>)\\\\=<2,\dfrac{10}{3}>[/tex]

Hence, the magnitude of  [tex]\dfrac{1}{6}(u+2v-w)[/tex] is:

3.8873

3) [tex]\dfrac{5}{2}u-3w[/tex]

The value of this operation is given as:

[tex]\dfrac{5}{2}<9,-2>-3<-5,-8>\\\\=<\dfrac{75}{2},19>[/tex]

Hence, the magnitude of  [tex]\dfrac{5}{2}u-3w[/tex] is:

42.0387

4) [tex]u-\dfrac{3}{2}v+2w[/tex]

The value of this operation is given as:

[tex]<9,-2>-\dfrac{3}{2}<-1,7>+2<-5,-8>\\ \\=<\dfrac{1}{2},\dfrac{-15}{2}>[/tex]

Hence, the magnitude of  [tex]u-\dfrac{3}{2}v+2w[/tex] is:

7.5166

5) [tex]-4v+\dfrac{1}{2}w[/tex]

the value of the operation is given as:

[tex]-4<-1,7>+\dfrac{1}{2}<-5,-8>\\\\=<\dfrac{3}{2},-32>[/tex]

Hence, the magnitude of [tex]-4v+\dfrac{1}{2}w[/tex] is:

32.0351

6) [tex]3u-v-\dfrac{5}{2}w[/tex]

The value of this operation is:

[tex]3<9,-2>-<-1,7>-\dfrac{5}{2}<-5,-8>\\ \\=<\dfrac{81}{2},7>[/tex]

Hence the magnitude of  [tex]3u-v-\dfrac{5}{2}w[/tex] is:

40.5863

On Arranging the above operations on the basis of their magnitude in ascending order we get the order as:

2) ,4), 5) ,1) ,6) ,3)




Answer: the above answer is correct

Step-by-step explanation: I got this right on Edmentum

Ver imagen elpink25