For the limit lim x → 3 (x3 − 4x + 9) = 24 illustrate the definition by finding the largest possible values of δ that correspond to ε = 0.2 and ε = 0.1. (round your answers to four decimal places.)

Respuesta :

[tex]\displaystyle\lim_{x\to3}x^3-4x+9=24[/tex]

is to say that for any [tex]\varepsilon>0[/tex], there exists [tex]\delta[/tex] such that

[tex]0<|x-3|<\delta\implies|x^3-4x+9-24|<\varepsilon[/tex]

Notice that

[tex]|x^3-4x-15|=|(x-3)(x^2+3x+5)|=|x-3||x^2+3x+5|=|x-3|\left|\left(x+\dfrac32\right)^2+\dfrac{11}4\right|[/tex]

If we fix [tex]0<\delta\le1[/tex], we would have

[tex]|x-3|<\delta\le1\implies-1<x-3<1\implies2<x<4[/tex]

[tex]\implies15<\left(x+\dfrac32\right)^2+\dfrac{11}4<33[/tex]

which is to say we can place a bound on the quadratic term above of 33 so that

[tex]|x^3-4x-15|=|x-3|\left|\left(x+\dfrac32\right)^2+\dfrac{11}4\right|<33|x-3|[/tex]

This suggests we could set [tex]\delta=\mathrm{min}\left\{1,\dfrac\varepsilon{33}\right\}[/tex].

So if we're given [tex]\varepsilon=0.2[/tex], we would choose [tex]\delta\approx0.0061[/tex], and if [tex]\varepsilon=0.1[/tex], we would choose [tex]\delta\approx0.0030[/tex].