Answer:
2.45 × [tex]10^{6}[/tex]
Step-by-step explanation:
using the rules of exponents
• [tex]\frac{a^{m} }{a^{n} }[/tex] = [tex]a^{(m-n)}[/tex]
• [tex](a^m)^{n}[/tex] = [tex]a^{mn}[/tex]
evaluating the numerator
(3.8 × [tex]10^{5}[/tex])² = 3.8² × [tex](10^5)^{2}[/tex] = 14.44 × [tex]10^{10}[/tex]
R = [tex]\frac{14.44.10^{10} }{5.9.10^{4} }[/tex]
= [tex]\frac{14.44}{5.9}[/tex] × [tex]\frac{10^{10} }{10^{4} }[/tex]
= 2.45 × [tex]10^{6}[/tex] ← to 2 dec. places