Respuesta :
Answer:
[tex]\displaystyle \lim_{x \to 5} \frac{x^2 - 25}{x - 5} = 10[/tex]
General Formulas and Concepts:
Algebra I
- Terms/Coefficients
- Factoring
Calculus
Limits
Limit Rule [Constant]: [tex]\displaystyle \lim_{x \to c} b = b[/tex]
Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
Limit Property [Addition/Subtraction]: [tex]\displaystyle \lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \lim_{x \to 5} \frac{x^2 - 25}{x - 5}[/tex]
Step 2: Find Limit
- [Limit] Factor: [tex]\displaystyle \lim_{x \to 5} \frac{x^2 - 25}{x - 5} = \lim_{x \to 5} \frac{(x - 5)(x + 5)}{x - 5}[/tex]
- [Limit] Simplify: [tex]\displaystyle \lim_{x \to 5} \frac{x^2 - 25}{x - 5} = \lim_{x \to 5} x + 5[/tex]
- [Limit] Evaluate [Limit Rule - Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to 5} \frac{x^2 - 25}{x - 5} = 5 + 5[/tex]
- Simplify: [tex]\displaystyle \lim_{x \to 5} \frac{x^2 - 25}{x - 5} = 10[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits