The function h(t)=-16t2+32t+128 represents the height of a cnnoj ball in feet t seconds after it is shot from a cannon. How many seconds does it take the cannonball to hot its target on thr grownd

Respuesta :

Answer:

4 seconds

Step-by-step explanation:

To solve this problem you will use the quadratic formula: [tex]\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex].

Identify the a, b, and c values of the given quadratic equation:

  • a = -16
  • b = 32
  • c = 128

Substitute these values into the quadratic formula.

[tex]\frac{-(32)\pm\sqrt{(32)^2-4(-16)(128)} }{2(-16)} \rightarrow \frac{-32\pm\sqrt{(1024)+(8192)} }{-32} \rightarrow \frac{-32\pm\sqrt{9216} }{-32} \rightarrow \frac{-32\pm96}{-32}[/tex]

Now split this into two equations.

[tex]\frac{-32+96}{-32} ~and~\frac{-32-96}{-32}[/tex]

Positive case: [tex]\frac{-32+96}{-32} \rightarrow \frac{64}{-32} =-2[/tex]

Negative case: [tex]\frac{-32-96}{-32} \rightarrow \frac{-128}{-32} =4[/tex]

Since time cannot be negative, the cannonball takes 4 seconds to hit its target on the ground.