Answer:
4 seconds
Step-by-step explanation:
To solve this problem you will use the quadratic formula: [tex]\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex].
Identify the a, b, and c values of the given quadratic equation:
Substitute these values into the quadratic formula.
[tex]\frac{-(32)\pm\sqrt{(32)^2-4(-16)(128)} }{2(-16)} \rightarrow \frac{-32\pm\sqrt{(1024)+(8192)} }{-32} \rightarrow \frac{-32\pm\sqrt{9216} }{-32} \rightarrow \frac{-32\pm96}{-32}[/tex]
Now split this into two equations.
[tex]\frac{-32+96}{-32} ~and~\frac{-32-96}{-32}[/tex]
Positive case: [tex]\frac{-32+96}{-32} \rightarrow \frac{64}{-32} =-2[/tex]
Negative case: [tex]\frac{-32-96}{-32} \rightarrow \frac{-128}{-32} =4[/tex]
Since time cannot be negative, the cannonball takes 4 seconds to hit its target on the ground.