joj70
contestada

Suppose a triangle has two sides of length 3 and 4 and that the angle between these two sides is 60°. What is the length of the third side of the triangle?


A) 3
B) Square root 13
C) 4 Square root 3
D) Square root 3

Suppose a triangle has two sides of length 3 and 4 and that the angle between these two sides is 60 What is the length of the third side of the triangle A 3 B S class=

Respuesta :

Answer:

sqrt(13)

B

Step-by-step explanation:

This problem uses the Cos law

Givens

  • a = 3
  • b = 4
  • C = 60 degrees

Formula

c^2 = a^2 + b^2 - 2*a*b*Cos(C)

Solution

  • c^2 = a^2 + b^2 - 2*a*b*Cos(C)     Substitute givens
  • c^2 = 3^2 + 4^2 - 2*3*4*Cos(60)   Evaluate
  • cos(60) = 1/2                                   Evaluate
  • c^2 = 9 + 16 - 2* 3 * 4 * 1/2             Add the first two term. The third term is 12
  • c^2 = 25 - 12                                   Subtract
  • c^2 = 13                                           Take the square root of both sides.
  • c = sqrt(13)                                       Answer

Answer:

B) Square root 13

Step-by-step explanation:

AP3X