contestada

From the sum of a2−2ab+b2 and 2a2+2ab+b2 subtract the sum of a2−b2 and a2+ab+3b2

Every 2 in this problem is meant to be a power of 2

Respuesta :

Answer:

[tex]a^2-ab[/tex]

Step-by-step explanation:

We need to find the sum of [tex]a^2-2ab+b^2[/tex] and [tex]2a^2+2ab+b^2[/tex] first.

Adding [tex]a^2-2ab+b^2[/tex] + [tex]2a^2+2ab+b^2[/tex]

Combining like terms, we get

[tex]a^2+2a^2=3a^2[/tex]

-2ab+2ab = 0

[tex]b^2+b^2=2b^2[/tex]

Therefore,

[tex]a^2-2ab+b^2 +2a^2+2ab+b^2=3a^2+2b^2[/tex].

Now, we need to find the sum of [tex]a^2-b^2 \ \ and \ \ a^2+ab+3b^2.[/tex].

Adding [tex]a^2−b^2+a^2+ab+3b^2[/tex].

Combining like terms, we get

[tex]a^2+a^2=2a^2[/tex]

[tex]-b^2+3b^2=2b^2[/tex].

Therefore,

[tex]a^2−b^2+a^2+ab+3b^2=2a^2+ab+2b^2.[/tex]

Now, subtracting

[tex]3a^2+2b^2 -(2a^2+ab+2b^2)[/tex].

Distributing minus sign over second parenthesis, we get

[tex]3a^2+2b^2-2a^2-ab-2b^2[/tex].

Combining like terms,

[tex]3a^2-2a^2=a^2[/tex]

[tex]2b^2-2b^2=0[/tex]

Therefore,

[tex]3a^2+2b^2-2a^2-ab-2b^2=a^2-ab[/tex].

Therefore, the difference of the sum of [tex]a^2-2ab+b^2[/tex] + [tex]2a^2+2ab+b^2[/tex] and [tex]a^2-b^2+a^2+ab+3b^2.[/tex] is [tex]a^2-ab.[/tex]