Respuesta :

Answer:

option-C:

graph-C

Step-by-step explanation:

we are given

[tex]f(x)=3\sqrt{x+1}[/tex]  if 0<=x<3

[tex]f(x)=5-x[/tex]  if 3<=x<=5

We can check corner points

At x=0:

[tex]f(0)=3\sqrt{0+1}[/tex]

[tex]f(0)=3[/tex]

so, our point is (0,3)

At x=3:

[tex]f(3)=5-3[/tex]

[tex]f(3)=2[/tex]

so, our point is (3,2)

At x=5:

[tex]f(5)=5-5[/tex]

[tex]f(5)=0[/tex]

so, our point is (5,0)

we can see all three points lie on graph-C only

so, graph-C is our graph


Answer:

Graph C

Step-by-step explanation:

f(x) = 3 * sqrt(x+1) ,0<x<3

     = 5-x   , 3 ≤x≤5

Lets see what happens at 3

As it approaches 3  the top equations gives us

f(2.9999999) = 3(sqrt(3+1)) 3*2 = 6   this is an open circle

f(3) = 5-3 = 2

So there is a discontinuity




Ver imagen wegnerkolmp2741o
Ver imagen wegnerkolmp2741o