Respuesta :
Answer:
Step-by-step explanation:
1. the rockets rate of change in miles per second is:
(5 - 1)/(2.5*60 - 30) = 1/30 miler per second or 0.033
the rockets rate of change in miles per minute is:
(5 - 1)/(2.5 - 30/60) = 2 miles per minute
2. About $12.50 OR an average of $11.81 over all 9 weeks
3. 300 miles per hour or 5 miles per minute
8. Answer: 0.033 miles per second
Step-by-step explanation:
Determine the coordinates in like units where x is seconds and y is miles, use the slope formula to find the rate of change, then reduce so the denominator is equal to 1.
(30 seconds, 1 mile) and (2.5 minutes, 5 miles)
= (30 seconds, 1 mile) and (150 seconds, 5 miles)
[tex]slope (m) = \dfrac{y_2-y_1}{x_2-x_1}[/tex]
[tex]= \dfrac{5-1\ \text{miles}}{150-30\ \text{seconds}}[/tex]
[tex]= \dfrac{4\ \text{miles}}{120\ \text{seconds}}[/tex]
[tex]= \dfrac{4\ \text{miles}}{120\ \text{seconds}}\div\bigg(\dfrac{120}{120}\bigg)[/tex]
[tex]=\dfrac{0.33\ \text{miles}}{1\ \text{second}}[/tex]
*************************************************************************************
11. Answer: $10 per week
Step-by-step explanation:
Determine the coordinates in like units where x is weeks and y is total dollars, use the slope formula to find the rate of change, then reduce so the denominator is equal to 1.
(4 weeks, $350) and (9 weeks, $400)
[tex]slope (m) = \dfrac{y_2-y_1}{x_2-x_1}[/tex]
[tex]= \dfrac{400-350\ \text{dollars}}{9-4\ \text{weeks}}[/tex]
[tex]= \dfrac{50\ \text{dollars}}{5\ \text{weeks}}[/tex]
[tex]= \dfrac{10\ \text{dollars}}{1\ \text{week}}[/tex]
*************************************************************************************
12. Answer: 300 miles per hour
Step-by-step explanation:
Determine the coordinates in like units where x is hours and y is miles, use the slope formula to find the rate of change, then reduce so the denominator is equal to 1.
(8:00 am, 0 miles) and (1:00 pm, 1500 miles)
= (8 hours, 0 miles) and (13 hours, 1500 miles)
[tex]slope (m) = \dfrac{y_2-y_1}{x_2-x_1}[/tex]
[tex]= \dfrac{1500-0\ \text{miles}}{13-8\ \text{hours}}[/tex]
[tex]= \dfrac{1500\ \text{miles}}{5\ \text{hours}}[/tex]
[tex]= \dfrac{300\ \text{miles}}{1\ \text{hour}}[/tex]