Help with these questions please!!


Answer:
(1)
option-B
(2)
f(x) is continuous at a=4
Step-by-step explanation:
(1)
we are given
[tex]\lim_{x \to 0} \frac{sin(2x)}{x}[/tex]
Since, we are suppose to find limit x-->0
so, we always choose value of x that is close to 0
At x=-0.03:
[tex]\frac{sin(2\times (-0.03))}{(-0.03)}=1.99880[/tex]
At x=-0.02:
[tex]\frac{sin(2\times (-0.02))}{(-0.02)}=1.99947[/tex]
At x=-0.01:
[tex]\frac{sin(2\times (-0.01))}{(-0.01)}=1.99987[/tex]
At x=0.01:
[tex]\frac{sin(2\times (0.01))}{(0.01)}=1.99987[/tex]
At x=0.02:
[tex]\frac{sin(2\times (0.02))}{(0.02)}=1.99947[/tex]
At x=0.03:
[tex]\frac{sin(2\times (0.03))}{(0.03)}=1.99880[/tex]
(2)
we are given
[tex]f(x)=\frac{x-4}{x+5}[/tex]
Since, we have to check continuity at a=4
So, firstly we will find limit value and then functional value
Limit value:
[tex]\lim_{x \to a} f(x)=\lim_{x \to a}\frac{x-4}{x+5}[/tex]
now, we can plug a=4
[tex]\lim_{x \to 4} f(x)=\lim_{x \to 4}\frac{4-4}{4+5}[/tex]
[tex]\lim_{x \to 4} f(x)=0[/tex]
Functional value:
We can plug x=4 into f(x)
[tex]f(4)=\frac{4-4}{4+5}[/tex]
[tex]f(4)=0[/tex]
So, we can see that
[tex]\lim_{x \to 4} f(x)=f(4)=0[/tex]
So, limit value is equal to function value
so, f(x) is continuous at a=4.............Answer