Respuesta :

Answer:

(1)

option-B

(2)

f(x) is continuous at a=4

Step-by-step explanation:

(1)

we are given

[tex]\lim_{x \to 0} \frac{sin(2x)}{x}[/tex]

Since, we are suppose to find limit x-->0

so, we always choose value of x that is  close to 0

At x=-0.03:

[tex]\frac{sin(2\times (-0.03))}{(-0.03)}=1.99880[/tex]

At x=-0.02:

[tex]\frac{sin(2\times (-0.02))}{(-0.02)}=1.99947[/tex]

At x=-0.01:

[tex]\frac{sin(2\times (-0.01))}{(-0.01)}=1.99987[/tex]

At x=0.01:

[tex]\frac{sin(2\times (0.01))}{(0.01)}=1.99987[/tex]

At x=0.02:

[tex]\frac{sin(2\times (0.02))}{(0.02)}=1.99947[/tex]

At x=0.03:

[tex]\frac{sin(2\times (0.03))}{(0.03)}=1.99880[/tex]


(2)

we are given

[tex]f(x)=\frac{x-4}{x+5}[/tex]

Since, we have to check continuity at a=4

So, firstly we will find limit value and then functional value

Limit value:

[tex]\lim_{x \to a}  f(x)=\lim_{x \to a}\frac{x-4}{x+5}[/tex]

now, we can plug a=4

[tex]\lim_{x \to 4}  f(x)=\lim_{x \to 4}\frac{4-4}{4+5}[/tex]

[tex]\lim_{x \to 4}  f(x)=0[/tex]

Functional value:

We can plug x=4 into f(x)

[tex]f(4)=\frac{4-4}{4+5}[/tex]

[tex]f(4)=0[/tex]

So, we can see that

[tex]\lim_{x \to 4}  f(x)=f(4)=0[/tex]

So, limit value is equal to function value

so, f(x) is continuous at a=4.............Answer

RELAXING NOICE
Relax