Answer: $ 16.96
Step-by-step explanation:
Here, the present value of the loan, PV = $695.20
Annual Interest rate = 17.9%
⇒ Monthly interest rate = 17.9/12 = 1.41666666667
Thus, the monthly interest rate (decimal ) , r = 0.014167 ( approx)
Monthly payment, P = $ 325
Let the time period of the loan = n.
Since, [tex]P= \frac{r(PV)}{1-(1+r)^{-n}}[/tex]
⇒ [tex]325= \frac{0.014167(695.20)}{1-(1+0.014167)^{-n}}[/tex]
⇒ [tex]1-(1+0.014167)^{-n}= \frac{10.37008984}{325}[/tex]
⇒ [tex]1-(1+0.014167)^{-n}= 0.03190796873 [/tex]
⇒ n = 2.19
Thus, her total payment = 2.19 × 325 = 711.75
⇒ Her total interest = 711.75 - 695.20 = $16.55
Since only 16.96 is near to 16.55
Thus, second option is correct.