Respuesta :
Answer:
x = 2.696, x = -0.696
Step-by-step explanation:
We are given the following function of x and we are to find the zeros for the given quadratic function:
[tex]f(x)= 8x^2-16x-15[/tex]
To find its zeros, we will use the quadratic formula:
[tex]x=\frac{-b+-\sqrt{b^2-4ac} }{2a}[/tex]
Substituting the values in the formula where [tex]a=8[/tex], [tex]b=-16[/tex] and [tex]c=-15[/tex].
[tex]x=\frac{-(-16)+-\sqrt{(-16)^2-4(8)(-15)} }{2(8)}[/tex]
[tex]x=\frac{16+-\sqrt{736} }{16}[/tex]
[tex]x=\frac{16+27.13}{16}[/tex] , [tex]x=\frac{16-27.13}{16}[/tex]
[tex]x = 2.696[/tex] , [tex]x=-0.696[/tex]
Therefore, the solutions are 2.696 and -0.696.
Answer: c on edge
Step-by-step explanation:
x=1-square root 23/8 and x=1+square root 7
