Answer: [tex]\bold{(12x - 7 - i\sqrt{47})(12x - 7 + i\sqrt{47})=0}[/tex]
Step-by-step explanation:
[tex]\dfrac{21x^2-7x - 16}{3x^2-4}=5[/tex]
cross multiply: 21x² - 7x - 16 = 15x² - 20
set equal to 0: 6x² - 7x + 4 = 0
Use quadratic formula to find the roots:
a=6, b=-7, c=4
[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]=\dfrac{-(-7) \pm \sqrt{(-7)^2-4(6)(4)}}{2(6)}[/tex]
[tex]=\dfrac{7 \pm \sqrt{49-96}}{12}[/tex]
[tex]=\dfrac{7 \pm \sqrt{-47}}{12}[/tex]
[tex]=\dfrac{7 \pm i\sqrt{47}}{12}[/tex]
[tex]x_1 =\dfrac{7 + i\sqrt{47}}{12} \qquad >>\qquad (12x - 7 - i\sqrt{47})= 0[/tex]
[tex]x_2 =\dfrac{7 - i\sqrt{47}}{12} \qquad >>\qquad (12x - 7 + i\sqrt{47})= 0[/tex]