Respuesta :

Answer: [tex]\bold{(12x - 7 - i\sqrt{47})(12x - 7 + i\sqrt{47})=0}[/tex]

Step-by-step explanation:

[tex]\dfrac{21x^2-7x - 16}{3x^2-4}=5[/tex]

cross multiply:  21x² - 7x - 16 = 15x² - 20

set equal to 0:  6x² - 7x + 4 = 0

Use quadratic formula to find the roots:

a=6, b=-7, c=4

[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]

   [tex]=\dfrac{-(-7) \pm \sqrt{(-7)^2-4(6)(4)}}{2(6)}[/tex]

   [tex]=\dfrac{7 \pm \sqrt{49-96}}{12}[/tex]

   [tex]=\dfrac{7 \pm \sqrt{-47}}{12}[/tex]

   [tex]=\dfrac{7 \pm i\sqrt{47}}{12}[/tex]

[tex]x_1 =\dfrac{7 + i\sqrt{47}}{12} \qquad >>\qquad (12x - 7 - i\sqrt{47})= 0[/tex]

[tex]x_2 =\dfrac{7 - i\sqrt{47}}{12} \qquad >>\qquad (12x - 7 + i\sqrt{47})= 0[/tex]



RELAXING NOICE
Relax