Answer:
[tex]5\frac{23}{64}\approx 5.36 [/tex] cubic meters.
Step-by-step explanation:
We have been given that the surface area of a cube is [tex]18\frac{3}{8}[/tex] square meters and we are asked to find the volume of the cube.
Since we know that surface area of a cube with each edge equals a units is:
[tex]\text{Total surface area of cube}=6a^2[/tex]
Let us find length of each edge using surface area formula.
[tex]18\frac{3}{8}=6a^2[/tex]
Let us convert our given area into mixed fraction.
[tex]\frac{147}{8}=6a^2[/tex]
Upon dividing both sides of our equation by 6 we will get,
[tex]\frac{147}{8*6}=a^2[/tex]
[tex]\frac{147}{48}=a^2[/tex]
Upon taking square root of both sides we will get,
[tex]\frac{7\sqrt{3}}{4\sqrt{3}}=a[/tex]
[tex]\frac{7}{4}=a[/tex]
Now we will use volume of cube formula with each side length 'a'.
[tex]\text{Volume of cube}=a^3[/tex]
[tex]\text{Volume of cube}=(\frac{7}{4})^3[/tex]
[tex]\text{Volume of cube}=\frac{343}{64}[/tex]
[tex]\text{Volume of cube}=5\frac{23}{64}[/tex]
[tex]\text{Volume of cube}=5.359375\approx 5.36[/tex]
Therefore, the volume of cube will be [tex]5\frac{23}{64}[/tex] cubic meters.