Which expression below gives the average rate of change of the function g(x) = -x2 - 4x on the interval 6 ≤ x ≤ 8 ?
plsss

Answer:
the first selection (see below)
Step-by-step explanation:
The average rate of change (m) on the interval [x1, x2] is given by ...
... m = (g(x2) -g(x1))/(x2 -x1)
For g(x) = -x²-4x and (x1, x2) = (6, 8), the expression is the one attached.
Answer:
[tex]\frac{[-8^2 - 4(8)]- [-6^2 - 4(6)]}{8-6}[/tex]
Step-by-step explanation:
average rate of change of the function g(x) = -x^2 - 4x on the interval 6 ≤ x ≤ 8
To find average rate of change we use formula
Average =[tex]\frac{g(x_2)-g(x_1)}{x^2-x_1}[/tex]
use the given interval 6<=-x<=8
x2=8 and x1= 6
we replace the value in the given formula
g(x) = -x^2 - 4x
[tex]g(8) = -8^2 - 4(8)[/tex]
[tex]g(6) = -6^2 - 4(6)[/tex]
x2-x1 is 8-6
So equation becomes
[tex]\frac{[-8^2 - 4(8)]- [-6^2 - 4(6)]}{8-6}[/tex]